Subject   : インジウム燐(InP)

カテゴリー  : 半導体 


 インジウム燐(InP)
リン化インジウム(III) 。半導体素材。

式量 145.792 g/mol 、 形状 銀色 、 結晶構造 閃亜鉛鉱型 、 CAS登録番号 [22398-80-7] 、 密度と相 4.787 g/cm3、 水への溶解度 不溶 g/100 mL ( ℃) 、 融点 1062 ℃

常温で安定な結晶構造は閃亜鉛鉱型構造(ジンクブレンド型構造)の化合物半導体。銀色の金属状化合物で、組成式InP。式量145.792、融点1062°C、比重4.81。半導体材料としての性質は、1.35eVのバンドギャップを持つIII-V族半導体であり、電子移動度は<0.54m2/Vs、ホール移動度は<0.02m2/Vsである。高電界下での電子移動度はシリコンやガリウム砒素より高い値となる。
 インジウム燐は単結晶基板として用いられるが、ガリウムヒ素やガリウム燐に比べると大きな格子定数を有することで、この基板に格子整合する(格子定数が同じとなる)InGaAs、AlInAs、InGaAsP、AlGaInAsといった材料をエピタキシャル成長することが可能となる。こういった材料を組み合わせることで、光通信用の受発光デバイスや、超高速トランジスタ、共鳴トンネリングダイオードやそれらの集積回路の作成が可能となる。こういったデバイスにおけるインジウム燐基板の役割としては、
 光デバイスにおいては、目的とする赤外光に対し、透明であること などである。エピタキシャル層をナノオーダーで制御することで低次元の量子効果、結晶歪効果、トンネル効果、量子ホール効果といった各種の興味深い物理現象を観測することも可能となる。
インジウム燐にFe、Si、S、Znといった不純物を添加することで、高抵抗(抵抗率>10MΩcm)の半絶縁性基板、n型導電性、p型導電性の低抵抗基板が一般に用いられている。
インジウム燐材料の物性を活かしたデバイスとしては、ガンダイオードと呼ばれるミリ波で発振するデバイスがある。伝導帯の二つの谷における電子移動度の違いによる発振現象を利用している。
単結晶成長には、LEC法、VCZ法、HB法、VGF法などが用いられるが、ガリウムヒ素に比べると結晶の熱伝導率が低いため温度制御が難しく、また、積層欠陥エネルギーも小さいため、高品質な単結晶成長の育成は難しいとされている。

◆ 応用分野
基板上の形成したヘテロエピタキシャル構造を利用し、HEMTやHBT等の超高速半導体素子の基板として用いられる。通常InPより電子移動度が高いInGaAsを電子走行層として利用することが多い。近年は、Si上のCMOS、SiGe系HBTの性能が向上し、InP系デバイスは、耐圧、消費電力、動作速度、帯域の点で有利である。
光通信用途では、InGaAsPやInGaAlAsといった四元系混晶半導体材料をエピタキシャル成長することができるので、半導体レーザー、光変調器、光増幅器、光導波路、発光ダイオード、受光素子等の各種光通信用デバイスの基板として使用され、通常は格子整合する混晶組成がカバーする1.0〜1.7μmの波長のデバイスに用いられる。特に光ファイバーの波長分散が最小になる1.3μm帯や伝送損失が最も少ない1.49〜1.6μm帯のデバイスが多い。他の材料系に比べデバイスの信頼性が高いこと、すでに幹線系から家庭まで敷設されるようになりインフラが整備されていること、デバイス価格の低コスト化に後押しされる追い風の中で、さらにデータコム分野やデジタル家電向けへと拡大するものと期待されている。通信以外の用途では、これらの波長に対応する各種光センサーに用いられることもあるが、さらに格子整合しない1.9〜2.6μm帯の受受光素子用基板にも利用され、水分センサー、分光器や輻射温度計測器などに用いられている。
 ⇒  化合物半導体

[メニューへ戻る]  [HOMEへ戻る]  [前のページに戻る]